Dr. Philippe J.S. De Brouwer

Applications of Quantum Computers in Banking

STRATEGIC INNOVATION AND ARTIFICIAL INTELLIGENCE - VELVET EDITION

ALL RIGHTS RESERVED BY THE AUTHOR

March 12, 2024

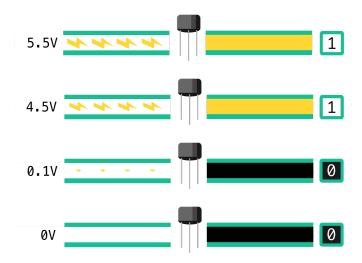


Figure 1: We use transistors to create logical states of 1 and 0.

Table of Contents

Contents

1	Classical Computers	2
2	What Are Quantum Computers?	4
3	Existing Quantum Computers	7
4	Quantum Computing Achievements in Banking	9
5	Quantum Computing Potential	9
6	The Route to Quantum for the Banker	11
7	Conclusion	12

1 Classical Computers

Classical Computers

Logical Gates

The Fastests Supercomputer: EXA FLOPS

(c) Philippe De Brouwer - 2 ---

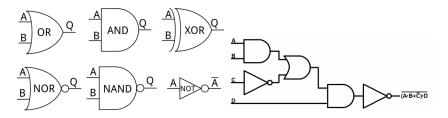


Figure 2: Those transitors are used to create logical gates that are in turn building blocks for logical circuits.

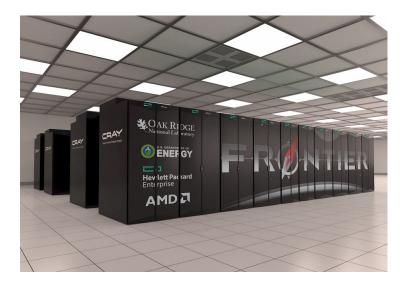


Figure 3: More info: https://en.wikipedia.org/wiki/Frontier_(supercomputer), and https://top500.org/lists/top500/2022/06/

-3 -

The faster super computer today

Table 1: SUPERCOMPUTER FRONTIER			
Aspect	Details		
Site	DOE/SC/Oak Ridge National Laboratory		
System URL	https://www.olcf.ornl.gov/frontier/		
Manufacturer	HPE		
Cores	8,730,112		
Processor	AMD Optimized 3rd Generation EPYC 64C 2GHz		
Installation Year	2021		
Performance			
Linpack Performance (Rmax)	1,102.00 PFlop/s		
Theoretical Peak (Rpeak)	1,685.65 PFlop/s		
Power Consumption			
Power	21,100.00 kW (Submitted)		
OS			
Operating System	HPE Cray OS		

2 What Are Quantum Computers?

QBits

Operations

Aspects of Quantum Computing: Superposition

(c) Philippe De Brouwer

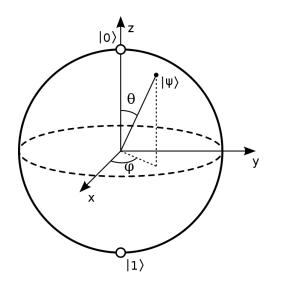


Figure 4: Source: nextplatform.com

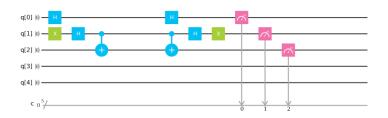
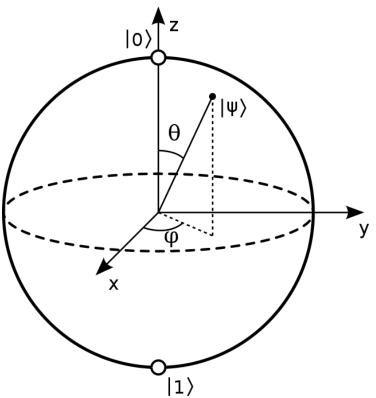



Figure 5: A quantum circuit: quantum gate operations on q-bits. Source: ibm.com

Superpo-

sition is a quantum state that is a combination of 2 mutually exclusive states

 $\alpha |0\rangle + \beta |1\rangle$

Note that if $\alpha > 0$ and $\beta > 0$ then the qubit's state contains both $|0\rangle$ and $|1\rangle$

Aspects of Quantum Computing: Entanglement

A system of two qubits can be characterized by

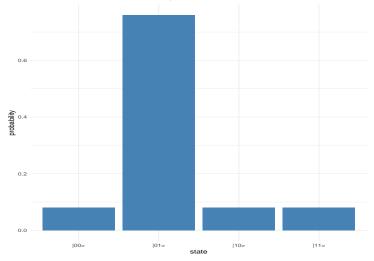
$$\alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle$$

where

• $|01\rangle$ means that the first qubit is $0\rangle$ and the second $|1\rangle$

•
$$\sum_{i=1}^{4} |\alpha_i|^2 = 1$$

If two or more of α_i are non-zero, and we cannot separate the states, then they are entangled. Knowing one determines the state of the other.


Example

 $\frac{\sqrt{2}}{2} |11\rangle + \frac{\sqrt{2}}{2} |10\rangle \text{ is not entangled} \\ \frac{\sqrt{2}}{2} |01\rangle + \frac{\sqrt{2}}{2} |10\rangle \text{ is entangled}$

-6 -

Aspects of Quantum Computing: Interference

Increase the probability of getting the correct answer (and reducing the probability of the wrong answer).

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha |0\rangle + \beta |1\rangle$
- 2 qubits \rightarrow 4 states: $\alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle$
- 3 qubits \rightarrow 8 quantum state dimensions
- 6 qubits \rightarrow 64 quantum state dimensions (card deck)
- 10 qubits \rightarrow 1024 quantum state dimensions (810 listed companies on WSE)
- 20 qubits $\to 1.048576 \times 10^6$ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits $\rightarrow 1.1529215 \times 10^{18}$ states (ca. 10^{19} grains of sand on earth)
- 175 qubits $\rightarrow 4.7890486 \times 10^{52}$ states (ca. 10⁵⁰ atoms on earth)
- 275 qubits \rightarrow 6.0708403 \times 10^{82} quantum states (ca. 10^{82} atoms in the visible universe)

3 Existing Quantum Computers

D-Wave

Banking application with D-Wave and Multiverse Computing

-7-

(c) Philippe De Brouwer

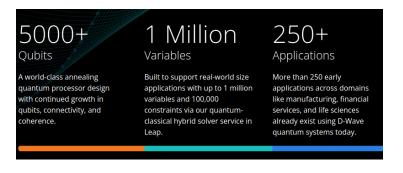


Figure 6: State of the art with D-Wave. Source: dwavesys.com

Figure 7: A paper about portfolio optimisation with the D-Wave computers. Source: arxiv.org

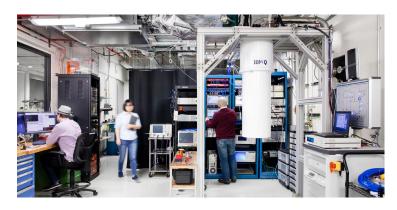


Figure 8: A quantum computer today. Source: ibm.com

IBM

4 Quantum Computing Achievements in Banking

Examples of banks's efforts

Some Real Results

- JPMC and IBM calculated prices for differnt options (European, path dependent, etc.) by Quantum Amplitude Estimation (similar to Monte-Carlo simulations)
- Goldman Sachs had a similar PoC in 2021 using QC Ware and IonQ
- JPM organ used Honeywell's quantum computer for mathematical operations that involve Fibonacci numbers
- Caixa Bank runs a hybrid framework of quantum and classical computing to improve credit risk scoring (PoC)

5 Quantum Computing Potential

Use cases in banking

- Optimization:
 - A. portfolio optimization
 - B. collateral optimization
 - C. stress testing

Strategic Innovation and Artificial Intelligence - Velvet Edition

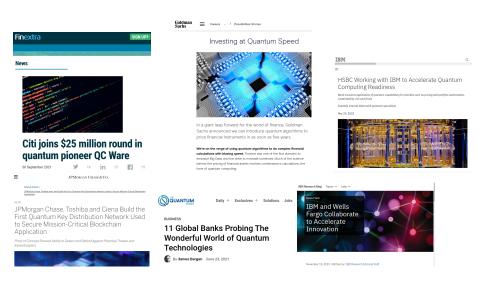
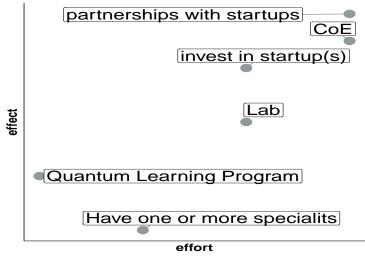


Figure 9: Sources: finextra.com, goldmansachs.com, ibm.com, and thequantuminsider.com

- D. transaction settlement
- E. asset pricing
- F. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation
- Simulations:
 - random number generator
 - Monte Carlo, LPDE simulations, etc.
 - asset valuation
 - ES and VaR calculations
- Encryption:
 - quantum key encryption
 - quantum currency
 - quantum blockchain

Resulting Advantages


quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting
- more suitable investment
- etc.

Boston Consulting Group estimates a value of 42B to 67B for financial institutions

6 The Route to Quantum for the Banker

Solutions

Shortcuts to solutions

- Get access to learning, online quantum computers, etc. via the IBM Quantum Accelerator for enterprise
- Use Qiskit to learn programming on quantum computers qiskit.org and their YouTube channel

7 Conclusion

Conclusion

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:
 - requiring new ways of encryption (quantum key distribution and quantum resistant algorithms)
 - solving optimizations that are not possible now (e.g. mean-variance optimisation for large groups of asssets)
 - - improved accuracy of risk calculations
 - - improved deep learning
 - - improving computational speed
 - - providing a greener solution to computational intensive tasks

Further Reading

- McKinsey, 2020, "How quantum computing could change financial services" download
- IBM, "The Quantum Decade" (e-book) download
- E. Rieffel and W Polak, MIT Press, "Quantum Computing, a Gentle Introduction" download
- Quantum Computing for the Quantum Curious, C. Hughes et al., Springer download
- a list of books: download