Dr. Philippe J.S. De Brouwer

Introduction to Quantum Computing

XII KNMF Conference

ALL RIGHTS RESERVED BY THE AUTHOR

April 4, 2024

Table of Contents

Contents

1 Introduction 3
1.1 Turing Machines 4
1.2 Quantum Computers 5
2 Basics of Quantum Physics 6
2.1 Quantum states and superposition 7
2.2 Quantum entanglement 8
2.3 Quantum interference 9
3 Quantum Bits (Qubits) 10
3.1 Understanding Qubits 10
4 Quantum Gates and Circuits 11
4.1 Differences between classical bits and qubits 11
4.2 Introduction to quantum gates 12
4.3 Measuring Qubits 14
4.4 Building quantum circuits 14
4.5 What are quantum computers really 15
5 Quantum Algorithms 16
5.1 Overview of quantum algorithms 16
5.2 Examples: Shor's algorithm 16
5.3 Examples: Grover's algorithm 17
5.4 Note: Ciphering 18
5.5 Solving Sparse Large Linear Systems 18
6 How to build a quantum computer 19
6.1 Models of Quantum Computing 19
6.2 Physical Realisations of Qubits 19
6.3 Quantum Supremacy 20
6.4 Current state of quantum hardware 20
7 Challenges in Quantum Computing 23
7.1 Decoherence and error correction 23
7.2 Scalability issues 24
8 Future of Quantum Computing 24
8.1 The Road-map 24
8.2 Potential applications 24
8.3 Case Study: HSBC 27
9 Limits of Quantum Computers 29
9.1 Problem Complexity limits 29
9.2 Limits in Applications 30
10 Conclusions31

1 Introduction

The three stages of computers: (1) Analogue

Figure 1: Analogue counting devices

The Analytical Engine - 1837 (concept)

Figure 2: In 1837 Charles Babage proposed the first general purpose computer: the "analytical engine". Legend: 1: memory, 2: the mill (CPU), 3: steam engine, 4: printer, 5: operation cards, 6: variable cards, 7: number cards, 8: barrel (controller)

1.1 Turing Machines

The three stages of computers: (2) Digital

Figure 3: Digital Computers

The three stages of computers: (2) Digital

Figure 4: The fastest supercomputer in the world: Frontier, HPE CRAY EX235A, AMD OPTIMIZED 3RD GENERATION EPYC 64C 2GHZ - USA, Oakr Ridge - Rmax $=1.5$ Exa Flops $=1.5 \times 10^{18}$ Flops, using $21^{\prime} 000 \mathrm{KwH}-$ foto: Oak Ridge

1.2 Quantum Computers

The three stages of computers: (3) Quantum

Figure 5: The timeline for quantum computers

2 Basics of Quantum Physics

The quantum world

Imagine a world where

- things are largely empty space (much more than 99.9999999999996% empty)
- things are waves and waves are things
- things can be in an infinite amount of places at the same time
- it is not possible to observe anything without changing what we observe forever and everywhere
- so and event on one planet can influence reality in another galaxy, and
- this influencing happens faster than the speed of light
- it is possible to get through walls even without sufficient energy to do so
- where no properties like color, softness, compassion, intelligence, cold, wet, etc. exists
- things have only mathematical properties
- vacuum is not empty

Could this world underlie our familiar and logical world?

2.1 Quantum states and superposition

Thomas Young's double slit experiment (1801)

Figure 6: The double slit experiment. - (images licensed under Creative Commons CCo 1.0 Universal Public Domain Dedication and Creative Commons Attribution-Share Alike 3.0 Unported (author Fu-Kwun Hwang))

Schrödinger's Equation

Quantum entities are described by the Schödinger equation:

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\hat{H} \Psi(\mathbf{r}, t)
$$

The probabilities to find the entity are then given by

$$
P(\mathbf{r}, t)=|\Psi(\mathbf{r}, t)|^{2}
$$

Superposition

The equation is linear, hence linear combinations of solutions are also solutions.

Example: Qubit

If an object can have a quantum state "up" or "down" with equal probabilities, then it is described by $\Psi=\frac{1}{\sqrt{2}}|u p\rangle+\frac{1}{\sqrt{2}}|d o w n\rangle$. When measured one state is observed.

Schrödinger's Cat thought experiment

Figure 7: Poison is released when the radioactive atom decayes. As long as the box is not opened the radioactive atom is in superposition $\Psi_{\text {atom }}=$ $\alpha_{1} \mid$ decayed $\rangle+\alpha_{2} \mid$ not decayed \rangle, and hence the cat must be $\Psi_{\text {cat }}=\alpha_{1} \mid$ dead $\rangle+$ $\alpha_{2} \mid$ alive \rangle.

2.2 Quantum entanglement

Entanglement

A system of two qubits can be characterized by

$$
\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle
$$

where

- $|01\rangle$ means: the first qubit is $|0\rangle$ and the second $|1\rangle$

Figure 8: AI's interpretation of wedding rings in entanglement. Microsoft's copilot

- $\sum_{i=1}^{4}\left|\alpha_{i}\right|^{2}=1$, with $\forall i: \alpha_{i} \in \mathbb{C}$

Entanglement

If two or more of α_{i} are non-zero, qubits are entangled if knowing one determines the state of the other.

Example
$\frac{\sqrt{2}}{2}|11\rangle+\frac{\sqrt{2}}{2}|10\rangle$ is not entangled
$\frac{\sqrt{2}}{2}|01\rangle+\frac{\sqrt{2}}{2}|10\rangle$ is entangled

Figure 9: AI's interpretation of entanglement. microsoft's copilot

2.3 Quantum interference

Amplitudes and Probabilities

For a single qubit: unit sphere in \mathbb{C}^{2} with the quantum
 state $\alpha_{1}|0\rangle+\alpha_{2}|1\rangle$ such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$.
Notes

- The state can be re-written as $|\cos \theta|^{2}+|\sin \theta|^{2}=1$, or $\left|\alpha_{1}\right|^{2}=\cos ^{2} \theta$ and $\left|\alpha_{2}\right|^{2}=\sin ^{2} \theta$.
- $\left|\alpha_{1}\right|^{2}$ is the probability of measuring $|0\rangle$ and $\left|\alpha_{2}\right|^{2}$ is the probability of measuring $|1\rangle$.

Amplitudes are Complex

Probabilities are real numbers and add up to 1 , amplitudes are complex and the sum of absolute values adds up to 1 . This allows for wave-like behaviour: interference.

Quantum Interference

Figure 10: Quantum particles can influence others or themselves (via superposition) and disappear in certain places.

Well . . .

Is the universe local and real?

Figure 11: AI's interpretation of a universe that is not local nor real. microsoft's copilot

3 Quantum Bits (Qubits)

3.1 Understanding Qubits

The QuBit

Figure 12: The qubit can be visualized on the Figure 13: AI's interpretation Bloch-Sphere. Image licensed under Creative of a qubit. microsoft's copilot Commons

4 Quantum Gates and Circuits

4.1 Differences between classical bits and qubits

Classical Computers

Figure 14: We use transistors to create logical states of 1 and 0.

Logical Gates

Figure 15: Those transistors are used to create logical gates that are in turn building blocks for logical circuits.

4.2 Introduction to quantum gates

Quantum Gates

quantum gate
a quantum logic gate (or quantum gate) is a basic quantum circuit operating on a small number of qubits.

Examples of Quantum Gates

Operator	Gate(s)		Matrix
Pauli-X (X)	- x	-1+	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
Pauli-Y (Y)	- Y		$\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$
Pauli-Z (Z)	- \mathbf{Z}		$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Hadamard (H)	- H		$\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
Phase (S, P)	- s		$\left[\begin{array}{ll}1 & 0 \\ 0 & 8\end{array}\right]$
$\pi / 8$ (T)	-T-		$\left[\begin{array}{lll}1 & \\ 0 & e^{* * / 4}\end{array}\right]$
Controlled Not (CNOT, CX)			$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
Controlled Z (CZ)	$\sqrt{\text { z }}$	$\stackrel{\bullet}{\bullet}$	$\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$
SWAP	X	$\underset{*}{*}$	$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Toffoli (CCNOT, CCX, TOFF)			On

Figure 16: Examples of popular quantum gates. There are in fact an uncountable infinity of quantum gates.

Examples of quantum gates on one qubit

The vector representation of $|a\rangle=\alpha_{1}|1\rangle+\alpha_{2}|0\rangle$ is $\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2}\end{array}\right]$
Examples acting on one qubit:

A. Identity gate: $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. Pauli X-gate (rotation around X axis): $X=\sigma_{x}=$ $\mathrm{NOT}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
C. Pauli Y-gate: $Y=\sigma_{y}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$
D. Pauli Z-gate: $Z=\sigma_{z}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Example of quantum gates: creating superposition
Hadamard Gate acts on a single qubit. It maps the basis states $|0\rangle \mapsto$ $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}}$ (an equal superposition state if given a computational basis state).

The two states $(|0\rangle+|1\rangle) / \sqrt{2}$ and $(|0\rangle-|1\rangle) / \sqrt{2}$ are sometimes written $|+\rangle$ and $|-\rangle$ respectively. The Hadamard gate performs a rotation of π about the axis $(\hat{x}+\hat{z}) / \sqrt{2}$ at the Bloch sphere, and is therefore involutory.

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

If the Hermitian $\left(H^{\dagger}=H^{-1}=H\right)$ Hadamard gate is used to perform a change of basis, it flips \hat{x} and \hat{z}. For example, $H Z H=X$ and $H \sqrt{X} H=$ $\sqrt{Z}=S$.

Example of a quantum gate on 2 qubits and entanglement

Controlled gates act on 2 or more qubits, where one or more qubits act as a control for some operation.

controlled NOT gate (or CNOT or CX)

acts on 2 qubits, and performs the NOT operation on the second qubit only when the first qubit is $|1\rangle$ (otherwise leaves it unchanged). With respect to the basis $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ it is represented by the Hermitian unitary matrix:

$$
\mathrm{CNOT}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

4.3 Measuring Qubits

Measuring Qubits

Measurement $=$ reduce the quantum states to a classical state.
Therefore, measurement is irreversible and not a quantum gate.
The probability of finding a state is the modulus of its amplitude ${ }^{1}$

$$
\text { if } \Psi=\alpha|x\rangle+\ldots, \text { then } P[|x\rangle]=|\alpha|^{2}
$$

For example, measuring a qubit with the quantum state $\frac{|0\rangle-i|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$ will yield with equal probability either $|0\rangle$ or $|1\rangle$

4.4 Building quantum circuits

Building your first quantum circuit

[^0]
4.5 What are quantum computers really

What is a quantum computer?

Figure 17: Photosynthesis is possible thanks to quantum mechanics. - own photo 2014

An example of a simulation: the Fermiac

Figure 18: The FERMIAC, or Monte Carlo trolley, was an analog device invented by Enrico Fermi to implement studies of neutron transport. - image under Creative Commons Attribution-Share Alike 1.0

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions
- 6 qubits $\rightarrow 64$ quantum state dimensions (card deck)
- 10 qubits $\rightarrow 1024$ quantum state dimensions (810 listed companies on WSE)
- 20 qubits $\rightarrow 1.048576 \times 10^{6}$ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits $\rightarrow 1.1529215 \times 10^{18}$ states (ca. 10^{19} grains of sand on earth)
- 175 qubits $\rightarrow 4.7890486 \times 10^{52}$ states (ca. 10^{50} atoms on earth)
- 275 qubits $\rightarrow 6.0708403 \times 10^{82}$ quantum states (ca. 10^{82} atoms in the visible universe)

Note: entanglement

To simulate quantum states on a Turing machine, we need to encode all possible entangled states too. The number of states in a quantum processor is 2^{N}, the complexity with entanglement scales as follows:
A. 10 qubits $\rightarrow 1,024$ quantum states $\xrightarrow{\text { entanglement }} 16,000$ Bits $=16 \mathrm{~KB}$
B. 500 qubits \rightarrow more quantum states than atoms in the visible universe $\xrightarrow{\text { entanglement }}$ not enough atoms in the visible universe

5 Quantum Algorithms

5.1 Overview of quantum algorithms

5.2 Examples: Shor's algorithm

Factoring

$P G P$ relies on factoring large numbers

17014118346	2	35710825224737666
04692317316	44058648615	74484304975778527
87303715884	12642566102	11572612
105727	22593863921	07958425763555097

\# digits	Supercomputer	Quantum comp.
10,000	0 s	56 s
100,000	0.6 year	2 min.
200,000	78,254 yrs	2 min.
300,000	449 mln. yrs	2 min.
400,000	72 x age of universe	3 min.

Factoring

Shor's Algorythm in quantum computers does not scale exponentially

Figure 19: Time needed to factor large numbers in classical approach and with quantum computers

5.3 Examples: Grover's algorithm

Programming a Universal Quantum Computer
Lov Grover's Algorithm

Figure 20: Grover's algorithm only needs $O(\sqrt{N})$ steps to find matching entry in unstructured data.

5.4 Note: Ciphering

Breaking Codes and Passwords

Shor's Alogorithm to factor numbers

5.5 Solving Sparse Large Linear Systems

Large Linear Systems

$$
\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 N} \\
\vdots & \ddots & \vdots \\
A_{M 1} & \ldots & A_{M N}
\end{array}\right] \times\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{N}
\end{array}\right] \quad \begin{aligned}
& \text { with up to } s \text { non-zero } \\
& A_{i j} \text { per row/column } \\
& \text { and condition number } \\
& k
\end{aligned}
$$

Classical methods solve this in $O(N s k) \ldots$ quantum algorithms need $O(\log (N) s k)$

6 How to build a quantum computer

6.1 Models of Quantum Computing

Models of Quantum Computing

Gate Model	Measurement Based	Adiabatic
also Circuit Model. Uses entangled qubits and gates to execute operations	set up entangled state over all qubits and then measure one by one	start from flat energy surface and build up slowly, expect the system to stay in the lowest energy state
	Annealing	
	not mathematically equivalent	

6.2 Physical Realisations of Qubits

Physical Realisations of Qubits

Superconducting
typically a tiny line
or loop of metal that
behaves as one atom
(eg. Google uses
aluminium, IBM a
mix of aluminium
and niobium)
- most popular
(IBM, Google,
Rigetti, Intel, etc.)

Photon Polarization

 The polarization of light is the qubitA photon moving along the z-axis has an associated electric field in the $\mathrm{x}-\mathrm{y}$ plane, and the 2dimensional quantity specifying this field is the polarization of the photon

6.3 Quantum Supremacy

Quantum Supremacy

Definition 1 (quantum supremacy). Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical computers practically cannot.

Expectation: 50 sufficiently coherent q-bits needed for quantum supremacy.

Definition 2 (quantum advantage). Quantum advantage is the potential to solve problems faster. In computational complexity-theoretic terms, this generally means providing a superpolynomial speedup over the best known or possible classical algorithm.

6.4 Current state of quantum hardware

Current State: Quantum Supremacy overconfident claims

Hello quantum world! Google publishes landmark quantum supremacy claim

The company says that its quantum computer is the first to perform a calculation that would be practically impossible for a classical machine.

Figure 21: Submitted, October $1^{\text {st }}, 2024$ - https://arxiv.org/abs/2403.00910

Current State: Quantum Supremacy with annealers

Figure 22: Submitted, March $1^{\text {st }}, 2024$ - https://arxiv.org/abs/2403.00910

D-Wave

Figure 23: The quantum computer of D-Wave (pictures: D-Wave) - since 2007

Adiabatic Algorithm

Figure 24: https://www.dwavesys.com/quantum-computing

Logical Quibits: recent progress: 2024-03-04

Figure 25: https://thequantuminsider.com 2024-04-03 - also on https://blogs.microsoft.com and https://www.quantinuum.com.

7 Challenges in Quantum Computing

7.1 Decoherence and error correction

Decoherence

Note: temperature

$$
v_{r m s}=\sqrt{\frac{3 k T}{m}}
$$

with:

Coherence and Decoherence

Systems interacting with the environment in which they reside generally become entangled with that environment, a phenomenon known as quantum decoherence. This can explain why, in practice, quantum effects are difficult to observe in systems larger than microscopic.

- $v_{r m s}$ the average speed of a molecule in a gas in $\frac{m}{s}$
- $k=1.38 \times 10^{-23} \frac{J}{K}$
- T the temperature in Kelvin
- m the molecular mass in Kg

7.2 Scalability issues

Scalability

Each qubit needs a connection ...

Figure 26: Intel Corporation's 49-qubit quantum computing test chip, "Tangle Lake," - 2018. Credit: Intel Corporation

8 Future of Quantum Computing

8.1 The Road-map

IBM's Road-map

Figure 27: IBM's Quantum Roadmap (newsroom.ibm.com)

8.2 Potential applications

- Quantum Physics modelling: most obvious application is to understand quantum mechanical systems better
- Biochemical modeling: from determining the 3D shape of a protein to gene expression, the calculation of complex biological molecules to the atoms could revolutionize biotechnology research.
- Climate modeling: Climate models are extraordinarily complex and stretch the limits of what current supercomputers can do. A better understanding of the climate, with a finer calculation scale in the model, both geographically and in time, could help in understanding climate change risks.
- Material Science: Understanding quantum physics better and the reaction of materials down to individual atoms can open new designs for materials used in aerospace, batteries, 3D printing, manufacturing, etc.
- Semiconductors, chip design, qubits: Quantum computers could be used to make computer chips a lot more powerful. With "normal" chips now reaching the nanometre scale, quantum phenomena become increasingly problematic, and quantum computers might be needed to solve them.
- Cryptography: Quantum computers could potentially make all current cryptography methods obsolete. This is a serious concern for military, financial \& IT systems. But at the same time, it could make cryptography even more secure.
- Optimizations: financial markets, traffic optimization, etc.

Figure 28: McKinsey Quantum Technology Monitor (April 2023) predicts USD 1.3 trillion in value by 2035 - source: https://www.mckinsey.com

Use cases in banking

- Optimization:
A. portfolio optimization
B. collateral optimization
C. stress testing
D. transaction settlement
E. asset pricing
F. ATM replenishment
- Machine Learning
- fraud detection
- credit scoring
- synthetic data and data augmentation
- Simulations:
- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation
- ES and VaR calculations
- Encryption:
- quantum key encryption
- quantum currency
- quantum blockchain

Resulting Advantages

quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting
- more suitable investment
- etc.

Boston Consulting Group estimates a value of $\$ 42 \mathrm{~B}$ to $\$ 67 \mathrm{~B}$ for financial institutions

8.3 Case Study: HSBC

Why is HSBC interested

- Quantum computing could revolutionise financial services in areas like portfolio optimisation, fraud detection and cybersecurity.
- Quantum computers promise to deliver a step-change in computational power, with the potential to tackle highly complex tasks far beyond the capabilities of today's machines
- The quantum sector is estimated USD1.3 trillion in value by 2035

HSBC's strategy

A. Working with a range of organisations like IBM, Fujitsu and Quantinuum, leading academic institutions, and governmental organisations, to put us at the forefront of the financial services industry in exploring how to integrate quantum computing into our products and services
B. Building a dedicated quantum research team and in-house team of PhD scientists at HSBC to formalise our use cases into deep research projects and develop patents and quantum products
C. Bank-wide strategy: Collaborating across business lines and functions to develop real world use cases to improve our processes and prepare for a quantum-secure economy
source: HSBC and quantum

Proofs of Concept in HSBC

Figure 29: Proofs of concept in HSBC. \qquad

Quantum Key Distribution in HSBC

Figure 30: Proofs of concept in HSBC: quantum key distribution. quantum

HSBC's Philip Intallura

Figure 31: Proofs of concept in HSBC: quantum key distribution. source: HSBC

9 Limits of Quantum Computers

9.1 Problem Complexity limits

Limits of Quantum Computers: Complexity Theory

PSPACE problems

Figure 32: BQP -bounded-error quantum polynomial time- is the quantum equivalent of BPP -bounded-error probabilistic polynomial time

9.2 Limits in Applications

Turing Machines are Turing Complete

Turing Complete

A system is Turing complete if it can simulate any Turing machine, meaning it can compute any Turing-computable function. Essentially, it can perform any calculation that a computer with unlimited resources could. Most modern programming languages are Turing complete.

In practical terms, a Turing Complete system means a system in which a program can be written that will find an answer, although with no guarantees regarding runtime or memory use.

Quantum Computers are impractical for many applications

While a (theoretical) Quantum Turing Machine is Turing Complete, there are much practical barriers.

10 Conclusions

Conclusions: Q-Day is near
I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.
- other encryption
- the ability to to gather more data and use it
- all kinds of optimizations, such as better optimized investment portfolios
- Artificial General Intelligence
- greener computing (e.g. bitcoin alone is responsible for 1.5% of the world's CO_{2} production)
- but most exciting:answers to questions that we don't know yet.

Further Reading

- Michio Kaku, Quantum Supremacy: How the Quantum Computer Revolution Will Change Everything - order on Amazon.com
- McKinsey, McKinsey Quantum Technology Monitor, April 2023 - download
- McKinsey, 2020, "How quantum computing could change financial services" - download
- IBM, "The Quantum Decade" (e-book) - download
- E. Rieffel and W Polak, MIT Press, "Quantum Computing, a Gentle Introduction" - download
- Quantum Computing for the Quantum Curious, C. Hughes et al., Springer - download
- a list of books: download

[^0]: ${ }^{1}$ This is known as the Born rule and appears as a stochastic non-reversible operation as it sets with a given probability the quantum state equal to the basis vector that represents the measured state.

